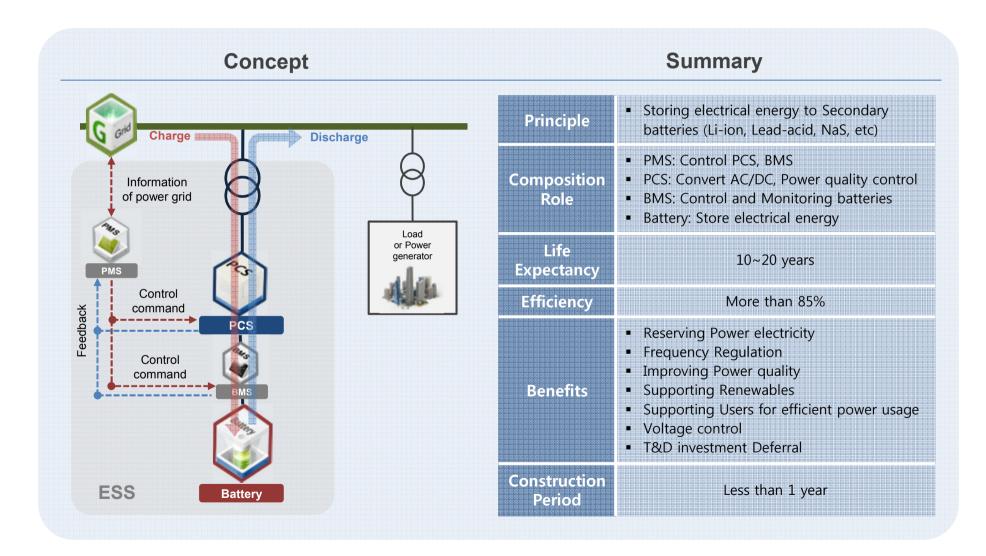


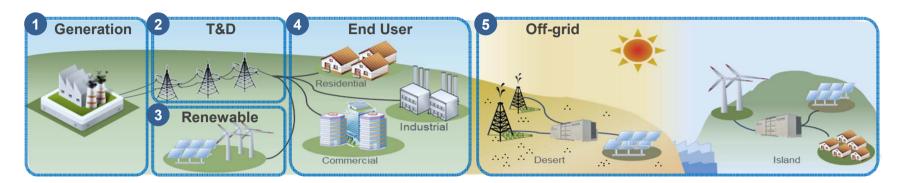
HYOSUNG

Global Top Energy Solution Provider

I. About Hyosung

U\$11B Revenue Company with 7 Performance Groups(PG*). Power and industrial systems performance group's major business area is T&D, motor and pump solutions.



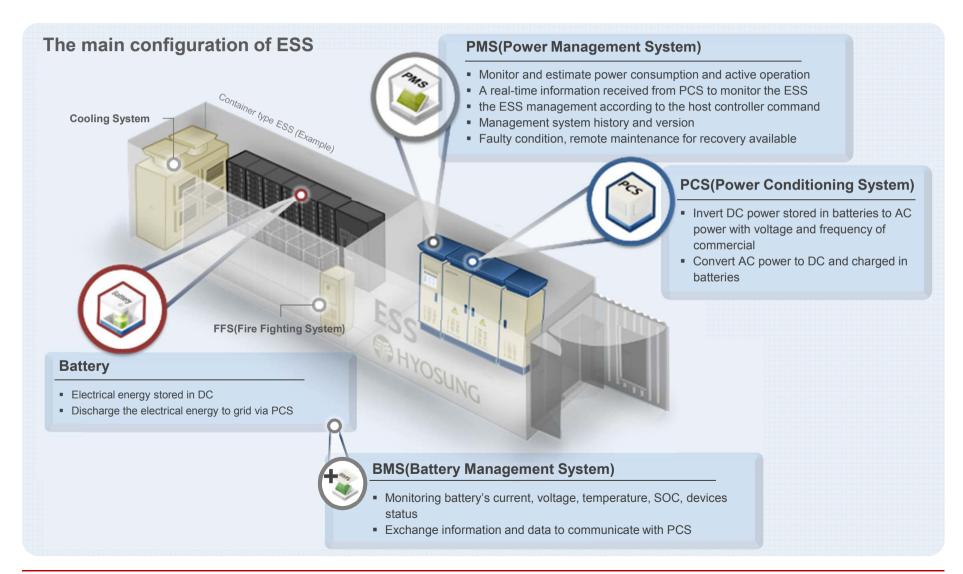

HYOSUNG

Global Top Energy Solution Provider

BESS(Battery Energy Storage System), so-called ESS, is a system used for storing electrical energy to secondary battery for timely use.

ESS is applicable to entire power system area from generation to end user. It has multiple benefits such as improving & stabilizing power quality, supporting renewables and off-grids.

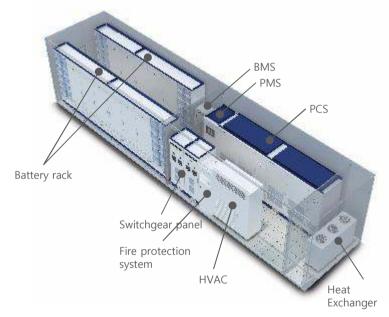
1 Generation

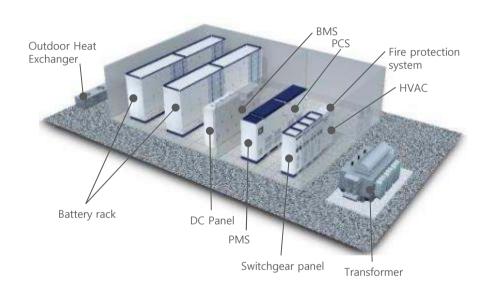

- Improving Generation efficiency
- Aiding generators by smoothing load fluctuation
- Decentering peak load / Improving power quality
- Supplying seconds-scale reserve
- Providing spinning reserves
- T&D
 - Ancillary services
 - Defer additional investments by reduce load
 - Responding sharp drop of voltage in a grid
 - Stabilizing power grid with regulating frequency
- 3 Renewables
 - Controlling Renewable output
 - Smoothing irregular output power
 - Profit obtained by the difference between REC's weighting*

*REC: Renewable Energy Certificate

4 End User

- Supporting Effective Power usage
- Charge at off-peak, discharge at on-peak
- Prevent blackout & voltage drop
- Power usage management and UPS
- 5 Off-grid
 - Supply power to the grid insufficient area through renewable integration
 - Store produced electricity through renewable energy in the areas of power does not reach such as island and desert


ESS is composed of PMS which control all the component of ESS, PCS which convert AC to DC and Batteries and BMS which control battery Modules and cells.


Composition of basic ESS installation

ESS could be installed with container type ESS or structure type ESS depends on capacity or customer's needs.

Container Type ESS

Indoor Type ESS

- W Up to 1MW/500kWh for standard 40ft. container
- Configured with PCS, Battery, HVAC, DC Link, monitoring module and fire protection system and may include transformer and switchgear panel if necessary
- Up to 1MW/500kWh (Standard 40ft. container)
- Transportable form production is also possible upon Customer's need
- Due to the nature of Battery, optimization design of air-cooling and fire safety equipment are critical design elements

- Most ESS more than 10MW of the U.S. is in the form of building structure include PCS, STATCOM and Battery
- Battery and PCS is required isolation or blocking for fire prevention
- STACOM can compensate active and reactive power with ESS

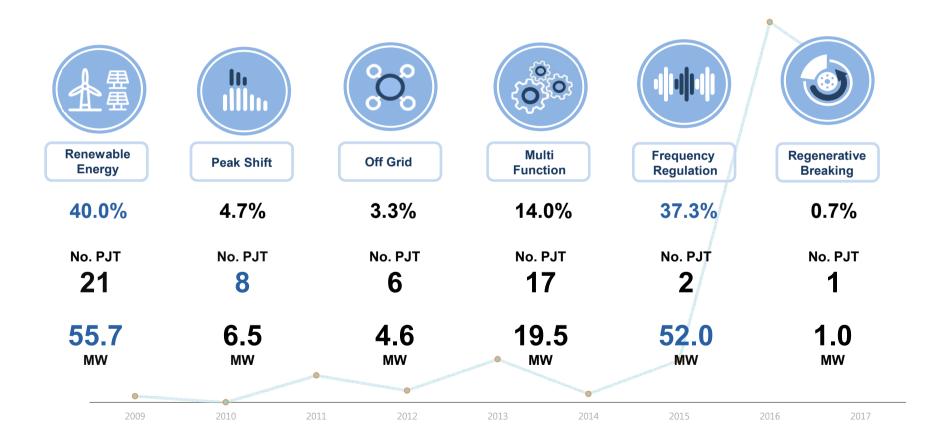
HYOSUNG

Global Top Energy Solution Provider

Composition of basic ESS installation

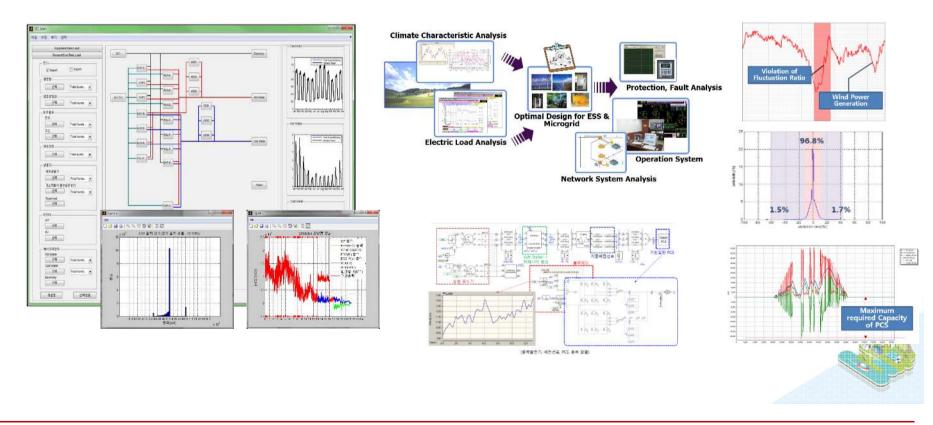
Hyosung Product Family for ESS & PV PCS

- We have various PCS product portfolio from 100kW, 125kW Modular Type to 2MW-class PCS and PMS system with built-in multi-function, and so can provide optimal proposal according to customer's needs.
- 1000kW PCS for PV is an UL-certificated product and other products are in compliance with IEC 62477.
- The configuration of PMS varies depending on the project size, and includes various functions such as renewable integration, frequency regulation, peak shaving and off-grid(microgrid).


Capacity	100/125kW	250kW	500kW	1000kW	2000kW
PV					
ESS PCS	Services				
ESS PMS		Section 1997			
		Offices BART OF 1887 OF 188			

HYOSUNG

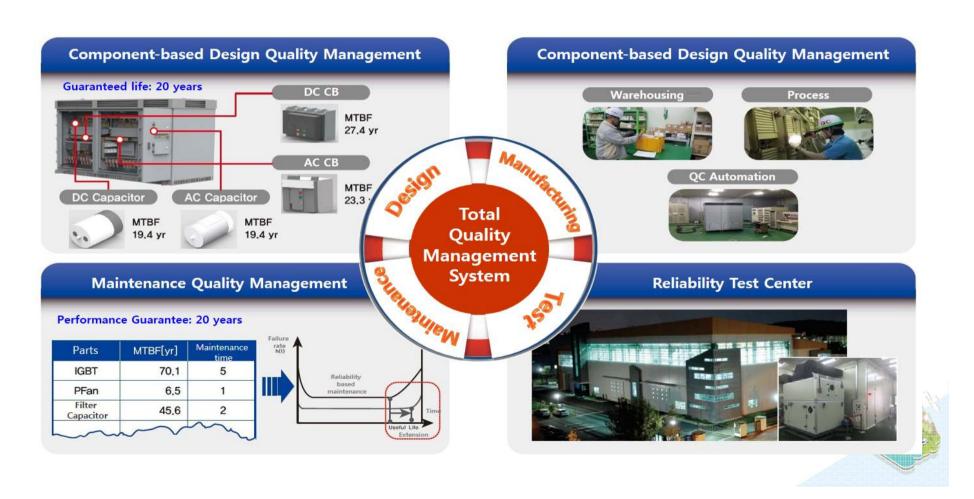
Techn	ical Data	HS-E110G	HS-E250G	HS-E500GL	HS-E1000GL	HS-E2000GL
Input	Voltage Range	550~850V	550~850V	550~850V	750~1,050V	750~1,050V
Side(DC)	Max. Input Current	218A	500A	1,000A	1,333A	2,667A
	Rated Power	110kW	250kW	500kW	1,000kW	2,000kW
	Output Voltage	3Ø, 380V	3Ø, 380V	3Ø, 340V	3Ø, 440V	3Ø, 440V
Output	Output Current	167A	380A	849A	1,312A	2,625A
Side(AC)	Grid Frequency	50/60Hz	50/60Hz	60Hz	60Hz	60Hz
	THD	<5%	<5%	<5%	<5%	<5%
	Power Factor	>0.99	>0.99	>0.99	>0.99	>0.99
Efficiency	Max. Efficiency	>97%	>97%	>97%	>97%	>97%
	Grid Tied Tarsome	0	0	Х	Х	X
	Cooling	Forced Air				
Environ-mental	Ambient Temperature	-20~50°C	-20~50°C	-20~50°C	-20~40°C	-20~40°C
	Relative humidity	<95%RH	<95%RH	<95%RH	<95%RH	<95%RH
	Protection Class	IP20	IP20	IP20	IP20	IP20
Mechanical Spec.	Dimensions (W/D/H)[mm]	1200*850*2120	2400*850*2120	2200*990*2200	4000*750*2220	5500*1100*2200
	Weight	1,070kg	2,400kg	1,930kg	2,930kg	5,000kg
Communication	Comm. Port	CAN2.0, RS422				
In	nage					


- Hyosung has experience in implementing PCS 139MW and batteries 240MWh on about 55 sites.
- In these projects, We operate stably with batteries from major companies such as Samsung SDI, LG Chemicals, KOKAM and SK innovation.
- Our systems cover various applications like renewable Integration, frequency regulation, energy shift and off-grid, and have recently conducted a regenerative braking system project.
- Hyosung has the competitiveness for consulting and engineering to satisfy customer needs.

Composition of basic ESS installation

Engineering for ESS & Microgrid

- Engineering capabilities to satisfy the diverse needs of customer
- Calculating optimal ESS capacity with load analysis and generation prediction of renewable energies
- Optimal Design for ESS considering renewable energies
- Design approach to "ESS" & "microgrid" considering economic feasibility
- Power network analysis



High Reliability and Availability

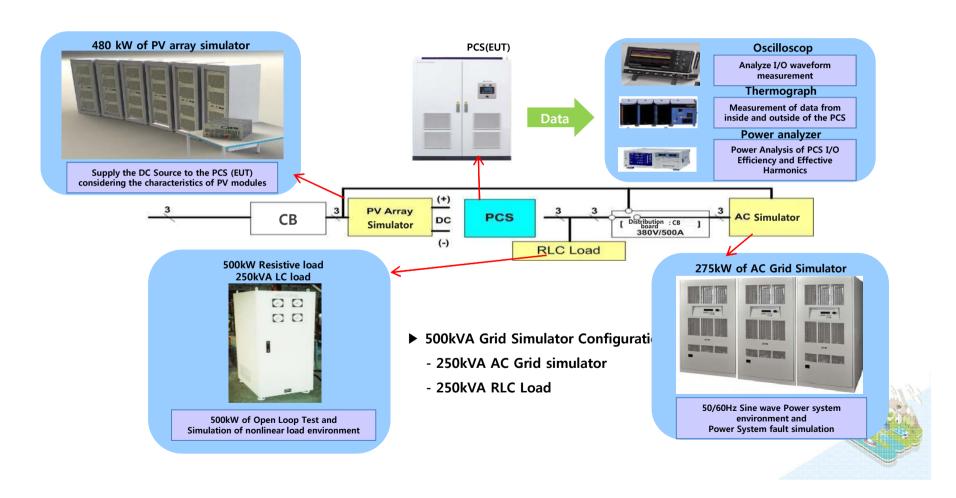
Implementation of Reliability-Centered Management for ensuring 20 year-performance of the ESS

- Consideration of system life and availability has been taken into account from product design

IV. Application

Production & Test Facility for 100% Quality Assurance

Hyosung has own production line and test facilities to deliver RELIABLE system ON TIME.

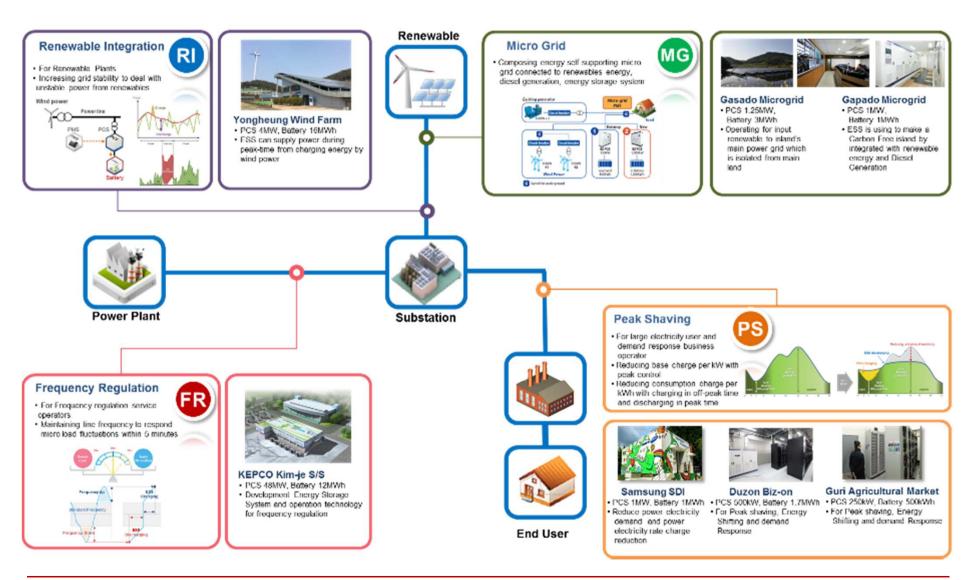


IV. Application

V. Experience records

Test Facilities for Inspection, QA and FAT of ESS system

We operate testing facilities to verify the performance and functions of PCS and ESS as well as type-testing for certification and performing FAT for customer in our own factory.

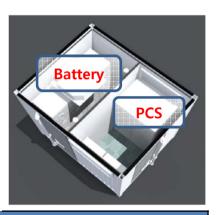


HYOSUNG

Global Top Energy Solution Provider

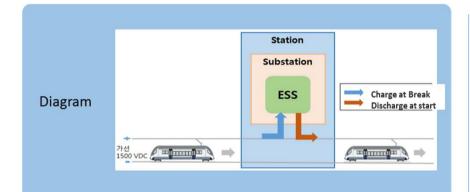
Major applications are Peak Shaving(PS), Frequency Regulation(FR), Renewable Integration(RI) and Micro-grid(MG) as shown the figure.

Major applications are Peak Shaving(PS), Frequency Regulation(FR), Renewable Integration(RI) and Micro-grid(MG) as shown the table.


	FR Frequency Regulation	PS Peak Shaving	RI Renewable Integration	MG Micro-grid
Purpose	 Providing spinning reserves Stabilizing power grid with regulating frequency Supplying reserve to grid 	 Doing arbitrage with charging in off-peak and discharging in peak. Distracting load in peak time(Peak shifting) 	 the difference between the REC Smoothing output of wind and photovoltaic generators Postponing investments to additional T&D infrastructure integrated renewables 	 Smoothing output of wind and photovoltaic generators Postponing investments to additional T&D infrastructure integrated renewables Supply power to the grid insufficient area through renewables integration
Discharging Time	Less than 10~30 minutes	More than 2 hours	0.5~5 hours	0.5~5 hours
Benefits	 Saving fuel and overhaul cost of frequency regulation by conventional generation Stabilizing power grid with fast response performance Improving power quality 	 Reducing risk of power shortage in peak time Postponing investments to additional power plant Doing arbitrage with electricity 	 Maximizing revenue of selling power with timely discharging Stabilizing power grid Saving cost of grid operation with controlling renewables power output 	 Maximizing revenue of selling power with timely discharging Stabilizing power grid Saving cost of grid operation with controlling renewables power output
Major user	Grid operator, Generation company	End-users	Renewables power plants	Renewables power plants
Case of installation	 1MW ESS (PJM for ancillary service) 8MW ESS (NYISO for Frequency Regulation) 4MW ESS (KEPCO for supplying reserve and improving power quality in Chochun S/S) 	 1MW/1MWh Samsung SDI Kiheung Plant, Gyeonggi Province 250kW/500kWh Guri Agricultural & Marine Products Wholesale Market, Gyeonggi Province 	 KOSEP(Young-Heung WT) 4MW/16MWh ESS 800kW ESS (Haengwon, Jeju for integrating wind power plant) 	 Jaeju Gapado island 1MW/1MWh ESS Gasado island 1.25MW/3MWh ESS Mozambique Off-grid(desert)

Hyosung can provide the package energy storage(99kW/273kWh) solution with grid base to maximize installation and convenience in use for small solar power plant

Description of Products



Classification	Description			
PCS	99kW			
Battery	273kWh			
Panel board	Circuit breaker and Electricity Meter			
Software	Monitoring and Automatic Charge & Discharge System			
WXDXH	3,048 X 2,438 X 2,691 (mm)			
Weight	6ton(Include Battery 2.2ton)			

Specifications

	Tech	nical Data		
	Voltage Range	550~850V DC		
	Maximum Input Current	180A		
	Rated output	99kW		
	Output voltage	3ø, 380V AC		
	Output current	150A		
	Transmission frequency	50/60Hz		
PCS	THD	<5%		
	Power factor	>0.99		
	Max. Efficiency	>96%		
	Grid Tied Transformer	0		
	Cooling system	Forced Air		
	Ambient temperature	-20~70℃		
	Relative humidity	<95%RH		
	Weight	870kg		
	Nominal energy	273kWh		
	Nominal voltage	720V DC		
Battery	Operating voltage	630V~ 820V DC		
	Operating temperature	23±5℃		
	Weight	2,200 kg		

Hyosung can provide the ESS for DC rail transportation and the multi-function operation solutions in the one platform for various application.

Definition

When the train is braked, the regenerative power generated by switching the electric motor of the train to the generator is saved through ESS, When the train is restarted, the devices supply charged power to increase power efficiency and stabilize power plants.

<6cars, 1Train>

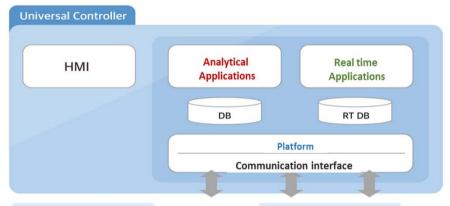
Standard

- Available energy: more 14MJ,

- Wire line supply voltage: 1500V,

- Maximum load supply time: 20Sec.(Operation time)

- Charging time: less 1Min.


Spec.

- PCS: 700kW, - Battery: 328kWh(more 2c-rate)

- Controller(MMI): Operation algorithm using voltage control

Feature

- Application of Li-ion Battery (Compared to existing Super Capacitor)
- Multi-application applicable (ex voltage control and DR)
- Many installation and operation experiences in various kinds of sites
- Ensure the safety of reliable air-conditioning system and operation
- Engineering progress through site operation analysis

Platform

- · Plug and Play
- Web based Configuration tool
- Redundancy
- Data quality monitoring
- Self recovery
- Scalability through modularity
- Real time performance
- Large Data Distribution Processing

Analytical Applications

- Load prediction
- Renewable Power Forecast
- Power generated Plan
- · Participation in the electricity market

Communication interface

- IEC 61850
- IEC 60870-5-101, 104
- · Modbus TCP/Serial
- CAN
- DNP 3.0

Real time Applications

- Peak Shaving
 - Peak Control
 - Connection point voltage control
 - Power factor compensation
- · Renewable Integration
 - Smoothing Control
 - rate of change Control
- Frequency Regulation
- Governor Free Control
- Automatic Gen. Control
- · Off-Grid
 - Black start
 - Separated Operating
- Micro Grid
- MG Status monitoring
- Optimal operation in real time
- System re-connection

HYOSUNG

Global Top Energy Solution Provider

	Project	End User	Installation site	PMS	PCS	Battery	Applications	Installation period
	JEJU Smart Renewable	KEPCO	Haeng won wind farm (Jeju Island)	Dynamic Power Control	800kW [800kW X 1]	Li-ion 200kWh Samsung SDI / 20min	RI	'09. 12 - '11. 05
	JEJU Smart Place	Korea Telecom	Sehwa middle school (Jeju Island)	Building Energy Management	120kW [20kW X 6]	Li-ion 180kWh Samsung SDI / 1.5hour	PS	'09.12 – '11. 05
	Jo-cheon Substation Project	KEPCO	Jo-cheon Substation (Jeju Island)	Dynamic Power Control	4MW [1MW X 4]	Li-ion 8MWh Samsung SDI / 2hour	PS RI FR	'11. 07 – '14. 06
-	Samsung SDI Project	Samsung SDI	Samsung SDI Gi-heung Plant	Building Energy Management	1MW [1MW X 1]	Li-ion 1MWh Samsung SDI / 1hour	PS	'12. 03 – '12. 10
	Smart grid Project for Peak shifting	Korea Telecom	Guri Agricultural Market	Community Energy Management	250kW [250kW X 1]	Li-ion 500kWh LG chemical / 2hour	PS	'12. 08 – '12. 12
	Hong Kong CLP Project	CLP	Hong kong Kowloon	Dynamic Power Control	500kW [250kW X 2]	Li-ion 300kWh Samsung SDI / 1hour	PS RI	'12. 11 – '13. 08
	Mozambique Off-grid PV generator	FUNAE	Mavago, Mecula, Muembe	Off-grid PV Control	900kW [5kW X 180]	Lead Acid 20MWh Sae-bang / 20hour	MG	'13. 01 – '13. 12
	Frequency Regulation ESS	Korea Power Exchange	Korea East West Power Company (EWP)	Frequency Regulation	4MW [1MW X 4]	Li-ion 2MWh SK innovation/30min	FR	'13. 06 – '16. 06
	Smart grid Project for Peak shifting	Duzon Biz-on	Duzon Biz-on Data Center	Building Energy Management	500kW [250kW X 2]	Li-ion 1.6MWh Samsung SDI / 3hour	PS	'13. 08 – '13. 12
	Renewable & Off-grid Integration	Jeju Provincial Government	Gapado Island	Micro-grid	1MW [1MW X 1]	Li-ion 1MWh Samsung SDI / 1hour	MG	'13. 08 – '14. 06
	Renewable & Off-grid Integration	KEPCO	Gasado Island	Micro-grid	1.25MW [250kW X 1/500kW X 2]	Li-ion 3MWh KOKAM / 3hour	MG	'14.03 – '14. 09
	KOSEP Wind Farm ESS Project	Korea South Eastern Power	Young-Heung Wind Farm	Renewable Integration	4MW [1MW X 4]	Li-ion 16MWh LG chemical / 4hour	RI	'15. 06 – '15. 10
	KHNP Demand Response ESS Project	Korea Hydro & Nuclear Power	KHNP HQ	Building Energy Management	1MW [1MW X 1]	Li-ion 2MWh LG chemical / 2hour	PS	'15. 09 – '15. 12
	Renewable & Micro-grid Integration	Jeju Provincial Government	Gapado Island (% additional installation)	Micro-grid	1.25MW [1MW X 1/250kW X 1]	Li-ion 2MWh Samsung SDI / 2hour	MG	'15. 12 – '16. 04
	DC Grid ESS	KEPCO	Go-chang Test center	DC Grid ESS	500kW [250kW X 2]	Li-ion 2MWh Samsung SDI / 4hour	MG	'16. 05 – '17. 05
	KEPCO 154kV Gim-Je S/S FR ESS	KEPCO	Gim-Je Substation	Frequency Regulation	48MW [2MW X 24]	Li-ion 12MWh LG화학 / 15min	FR	'16. 05 – '17. 06
	Pyeong-Chang Wind Farm ESS	EMAX	Pyeong-Chang Wind Farm	Renewable Integration	6MW [2MW X 3]	Li-ion 18MWh 삼성SDI / 3hour	RI	''16. 09 – '16. 12
	KOSEP Solar Farm ESS Project	Korea South Eastern Power	Young-Heung Solar Farm	Renewable Integration	7MW [2MW X 2, 1MW X 3]	Li-ion 18MWh 삼성SDI / 3hour	RI	In progress (2017)
.10	Hae-Nam Solar Farm ESS	Top Solar	Hae-Nam Solar Farm	Renewable Integration	8MW [2MW X 4]	Li-ion 33MWh Samsung SDI / 4hour	RI	In progress (2017)
	University Project for Peak shifting	DAEHO	Chosun University	Building Energy Management	2MW [1MW X 2]	Li-ion 7MWh 삼성SDI / 3hour	PS	In progress (2017)
.00	Best Solar Farm ESS	Best Solar	Best Solar Farm	Renewable Integration	8MW [2MW X 4]	Li-ion 34MWh 삼성SDI / 4hour	RI	In progress (2017)
	Gang-Dong Wind Farm ESS	Gang-Dong Wind	Gang-Dong Wind Farm	Renewable Integration	2MW [2MW X 1]	Li-ion 6MWh 삼성SDI / 3hour	RI	In progress (2017)
	Sam Chon Po Solar Farm ESS	Korea South Eastern Power	Sam Chon Po Solar Farm	Renewable Integration	12.5MW	Li-ion 32MWh 삼성SDI / 3hour	RI	In progress (2017)

For the purpose of demonstration of Demand Response, Renewable Integration, Voltage support application, grid-tied ESS has been deployed at Jocheon S/S of Kepco, Kowloon S/S of CLP, Hongkong.

Multifunctional ESS for substation

Jocheon S/S, Jeju(KEPCO, 4MW/8MWh)

- Renewable integration(output smoothing), Voltage support (VAR compensation), Black start etc.
- Integrator : KEPCO
- PCS: HYOSUNG 1MW X 4Unit Battery: Samsung SDI 8MWh

Kowloon S/S, Hongkong(CLP, 400kW/350kWh)

- Load leveling, Peak Shaving, Renewable integration(output) smoothing)
- Integrator : HYOSUNG
- PCS: HYOSUNG 250kW X 2Unit Battery : Samsung SDI 350kWh

ESS projects - Experience records

Hyosung has supplied ESS in compliance with customer requirement with customized by reviewing historical data.

Peak Shaving ESS

Guri Agricultural and Fishery Center(KT, 250kW/500kWh)

Savings : Demand charge : \$20,000, Energy charge : \$10,000

Installed Indoor, 22.9kW feeder connected

Integrator : HYOSUNG

PCS: HYOSUNG 250kW X 1Unit Battery: LG Chem. 500kWh

Deozon Biz-on Chucheon Campus(500kW/1.6MWh)

Savings : Demand charge \$32,000

Integrator: HYOSUNG

PCS: HYOSUNG 250kW X 2 Unit

Battery : Samsung SDI 1.6MWh

Samsung SDI Kiheung Campus(SDI, 1MW/1MWh)

Savings : Demand Charge \$80,000 Energy Charge : \$20,000

Installed indoor 22.9kW feeder connected

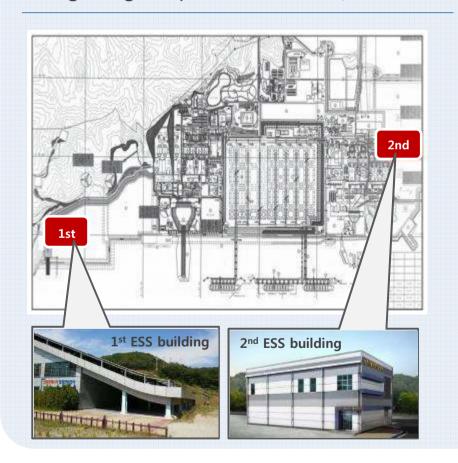
Integrator : HYOSUNG

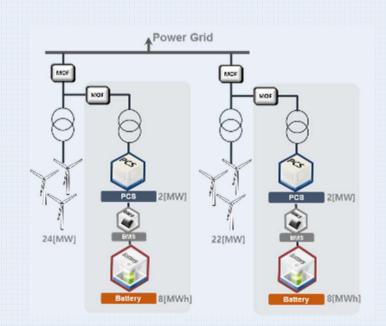
PCS: HYOSUNG 1MW X 1Unit Battery : Samsung SDI 1MWh

Korea Hydro and Nuclear Power(1MW/2MWh)

Peak shaving and back up power supply

Integrator : HYOSUNG


PCS: HYOSUNG 1MW X 1Unit


Battery : LG Chem 2MWh

ESS projects - Experience records

- Hyosung has delivered ESS in Youngheung power plant belongs to South-East Power aims to improve profitability through the acquisition of REC.
- Renewable Integration ESS Wind linked ESS

Youngheung ESS(South East Power, 4MW/16MWh)

- By integrating of ESS aims output smoothing and ensures additional subsidies
- Total 4MW/16MWh(2MW/8MWh X 2set)
- Integrator: HYOSUNG
- PCS: HYOSUNG 4MW(1MW X 2Unit, 2set)
- Battery : LG Chem. 16MWh

Myosung has built the world's largest stand-alone solar power plant in Mozambique and the country's first Carbon Free Island in Jeju Gapado successfully.

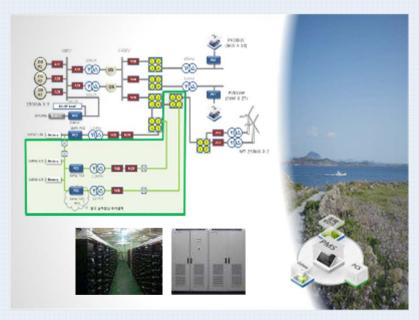
Mozambique Solar integrated ESS(900kW/20MWh)

- Mavago(550kW), Mecula(400kW), Muembe(350kW) Solar power plant forms stand alone micro grid
- Integrator : HYOSUNG
- PCS: SMA Single phase 5kW 180Unit, 900kW
- Battery : Lead Acid 2V, 2000Ah, 5105Unit, Total 20MWh

Gapado Stand alone ESS(1MW/1MWh, Y2013)

- Using 2unit of Wind turbine and ESS provide to 200 residential with electric power
- Integrator : HYOSUNG
- PCS: HYOSUNG 1MW X 1Unit Battery : Samsung SDI 1MWh

Using accumulated technology and know how, Hyosung expands to development of stand alone Micro-grid.


Micro-grid Solution

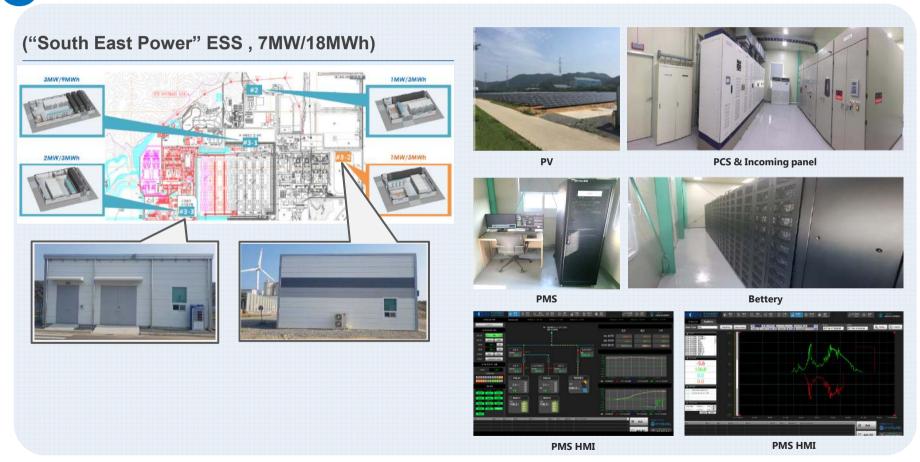
Gasado Micro-grid ESS(1.25MW/3MWh)

- Integrating Solar, Wind with ESS provide electricity to population in Island, conventional generator used as back up
- Integrator : HYOSUNG
- PCS: HYOSUNG 250kW X 1Unit, 500kW X 2Unit
- Battery : Kokam 3MWh

Gapado ESS 2nd stage ESS (1.25MW/2MWh)

- To enlarge capacity of ESS on 1st stage ESS
- Integrator : HYOSUNG
- PCS: HYOSUNG 1MW X 1Unit, 250kW X 1Unit
- Battery : Samsung SDI 2MWh

ESS projects - Experience records


Hyosung will provide ESS 48MW for Frequency Regulation at Kim-Je substation. This ESS is the largest capacity since FR ESS has been started.

ESS projects - Experience records

- Hyosung installed 7MW/18MWh ESS system connected to a solar power plant in South East Power Co., the biggest government-owned power plant company in Korea.
- Renewable Integration ESS for Solar Power Farm

ADVANCE

Thank you

Global Top
Energy, Machinery & Plant
Solution Provider

www.hyosungpni.com

(04144) 119, Mapo-daero, Mapo-gu, Seoul, Korea ESS Sales Team

TEL +82-2-707-4358 **FAX** +82-2-707-4398